Tutorials References Exercises Videos Menu
Create Website Get Certified Upgrade

R Data Frames


Data Frames

Data Frames are data displayed in a format as a table.

Data Frames can have different types of data inside it. While the first column can be character, the second and third can be numeric or logical. However, each column should have the same type of data.

Use the data.frame() function to create a data frame:

Example

# Create a data frame
Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

# Print the data frame
Data_Frame
Try it Yourself »

Summarize the Data

Use the summary() function to summarize the data from a Data Frame:

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

Data_Frame

summary(Data_Frame)
Try it Yourself »

You will learn more about the summary() function in the statistical part of the R tutorial.


Access Items

We can use single brackets [ ], double brackets [[ ]] or $ to access columns from a data frame:

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

Data_Frame[1]

Data_Frame[["Training"]]

Data_Frame$Training
Try it Yourself »


Add Rows

Use the rbind() function to add new rows in a Data Frame:

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

# Add a new row
New_row_DF <- rbind(Data_Frame, c("Strength", 110, 110))

# Print the new row
New_row_DF
Try it Yourself »

Add Columns

Use the cbind() function to add new columns in a Data Frame:

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

# Add a new column
New_col_DF <- cbind(Data_Frame, Steps = c(1000, 6000, 2000))

# Print the new column
New_col_DF
Try it Yourself »

Remove Rows and Columns

Use the c() function to remove rows and columns in a Data Frame:

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

# Remove the first row and column
Data_Frame_New <- Data_Frame[-c(1), -c(1)]

# Print the new data frame
Data_Frame_New
Try it Yourself »

Amount of Rows and Columns

Use the dim() function to find the amount of rows and columns in a Data Frame:

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

dim(Data_Frame)
Try it Yourself »

You can also use the ncol() function to find the number of columns and nrow() to find the number of rows:

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

ncol(Data_Frame)
nrow(Data_Frame)
Try it Yourself »

Data Frame Length

Use the length() function to find the number of columns in a Data Frame (similar to ncol()):

Example

Data_Frame <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

length(Data_Frame)
Try it Yourself »

Combining Data Frames

Use the rbind() function to combine two or more data frames in R vertically:

Example

Data_Frame1 <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

Data_Frame2 <- data.frame (
  Training = c("Stamina", "Stamina", "Strength"),
  Pulse = c(140, 150, 160),
  Duration = c(30, 30, 20)
)

New_Data_Frame <- rbind(Data_Frame1, Data_Frame2)
New_Data_Frame
Try it Yourself »

And use the cbind() function to combine two or more data frames in R horizontally:

Example

Data_Frame3 <- data.frame (
  Training = c("Strength", "Stamina", "Other"),
  Pulse = c(100, 150, 120),
  Duration = c(60, 30, 45)
)

Data_Frame4 <- data.frame (
  Steps = c(3000, 6000, 2000),
  Calories = c(300, 400, 300)
)

New_Data_Frame1 <- cbind(Data_Frame3, Data_Frame4)
New_Data_Frame1
Try it Yourself »